Printed	Pages-	5
---------	--------	---

Roll No.

B028414(028) www.sdffazed (a)

B. Tech. (Fourth Semester) Examination, April-May 2021

(Electronics & Tele. Communication Engg. Branch)

SIGNALS & SYSTEMS

Time Allowed: Three hours

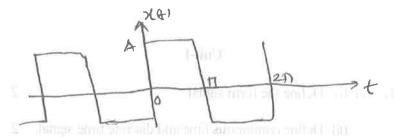
Maximum Marks: 100

Minimum Pass Marks: 35

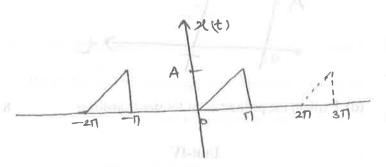
Note: Attempt all questions. Part (a) from each question is compulsory. Attempt any two parts from part (b), (c) and (d) of each question.

Unit-I

1. (a) (i) Define the term signal.

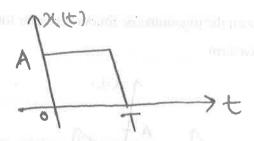

- 2
- (ii) Define continuous time and discrete time signal.

- (b) find the even and odd components of signal $x(t) = \cos t + 2\sin t + 3\cos t \cdot \sin t$
- (c) Describe energy and power signals. 8
- (d) Sketch and calculate their energies. 8
 - (i) $e^{-10t}u(t)$
 - (ii) u(t) u(t-15)


Unit-II

- 2. (a) Define fourier series and give the Dirichlet's conditions.
 - (b) State and explain any five properties of fourier series. 8
 - (c) Obtain the exponential fourier series for waveform shown in figure.

8


(d) Obtain the trigonometric fourier series for following waveform.

Unit-III government and the second

- 3. (a) State and prove following properties of fourier transform:
 - (i) Time scaling
 - (ii) Time shifting
 - (b) Find the fourier transform for:
 - (i) $\cos w_0 t u(t)$
 - (ii) $\sin w_0 t u(t)$
 - (c) Find the fourier transform of the rectangular pulse shown in figure.

8

(d) Explain the properties of fourier transform.

8

4

Unit-IV

- 4. (a) Explain any two property of z-transform.
 - (b) Find z-transform for : 8
 - (i) $x(n) = 2^n u(n-2)$
 - (ii) $x(n) = n^2 u(n)$
 - (c) Find z-transform and ROC of

$$x(n) = (2/3)^n u(n) + \left(\frac{-1}{2}\right)^2 u(n)$$

- (d) Find z-transform of following sequences: 8
 - (i) $a^{-n}u(-n-1)$

(ii) $a^{n+1}u(n+1)$

Unit-V

- 5. (a) Write the properties of continuous time LTI system. 4
 - (b) If the impulse response of any system is given by $e^{-ut}u(t)$. Determine the step response.

8

- (c) Obtain the convolution of $x(t) = e^{-3t}u(t)$ and h(t) = u(t-1).
- (d) For an LTI system with unit impulse response $h(t) = e^{-2t}u(t) \text{ determine output to the input}$ $x(t) = e^{-t}u(t) . \tag{8}$